Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(9): 11740-11748, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38394674

RESUMO

With the rapid development of human-machine interactions and artificial intelligence, the demand for wearable electronic devices is increasing uncontrollably all over the world; however, an unsustainable power supply for such sensors continues to restrict their applications. In the present work, piezoelectric barium titanate (BaTiO3) ceramic powder with excellent properties was prepared from milled precursors through a solid-state reaction. To fabricate a flexible device, the as-prepared BaTiO3 powder was mixed with polydimethylsiloxane (PDMS) polymer. The BaTiO3/PDMS ink with excellent rheological properties was extruded smoothly by direct ink writing technology (DIW). BaTiO3 particles were aligned due to the shear stress effect during the printing process. Subsequently, the as-printed composite was assembled into a sandwich-type device for effective energy harvesting. It was observed that the maximum output voltage and current of this device reached 68 V and 720 nA, respectively, for a BaTiO3 content of 6 vol %. Therefore, the material extrusion-based three-dimensional (3D) printing technique can be used to prepare flexible piezoelectric composites for efficient energy harvesting.

2.
ACS Appl Mater Interfaces ; 9(42): 36772-36782, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-28971675

RESUMO

Wastewater contaminated with heavy metals is a worldwide concern due to the toxicity to human and animals. The current study presents an incorporation of adsorption and low-field dynamic magnetic separation technique for the treatment of heavy-metal-contaminated water. The key components are the eco-fabricated magnetic filter with mesh architectures (constituted of a soft magnetic material (Ni,Zn)Fe2O4) and poly(acrylic acid) (PAA)-coated quasi-superparamagnetic Fe3O4 nanoparticles (NPs). PAA-coated Fe3O4 NPs possess high adsorption capacity of heavy metal ions including Pb, Ni, Co, and Cu and can be easily regenerated after the adjustment of pH. Moreover, magnetic mesh filter has shown excellent collection ability of quasi-superparamagnetic particles under a magnetic field as low as 0.7 kOe (0.07 T) and can easily release these particles during ultrasonic washing when small magnets are removed. In the end, after one filtration process, the heavy metal concentration can be significantly decreased from 1.0 mg L-1 to below the drinking water standard recommended by the World Health Organization (e.g., less than 0.01 mg L-1 for Pb). Overall, a proof-of-concept adsorption and subsequent low-field dynamic separation technique is demonstrated as an economical and efficient route for heavy metal removal from wastewater.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...